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Abstract

This paper presents generic models for the effect of a chemical

toxin on cells forming the tissue of an organ. The models are

illustrative, not specific to organ or toxin. Interactive response of

within-tissue toxin and cells is modeled: cell capability to modify

(metabolize or bind) toxin is represented, as is the alteration of that

capability by toxin presence. Both processes are represented in the

context of simple versions of the cell cycle.

Toxin-cell interaction is explicitly represented in terms of inter-

cell chemical signaling that encourages replacement or repair of

cells. The impact of cell death by apoptosis and necrosis is

represented in terms of within-tissue toxin concentration. The

model is explicitly stochastic, representing inter-cell and toxin input

and within-organ concentration in terms of diffusion

approximations. Explicit mathematical discussion is given of dose-

response function behavior at low doses.





1. Introduction

Application of laboratory toxicology data to environmental and human

problems of risk assessment almost always requires extrapolation of the data

from the experimentally-used dose regimen to the exposure conditions of

practical concern, and from the animal species tested to the species of concern

(usually man). This extrapolation and estimation process is known as chemical

risk assessment. The risk assessment process has undergone considerable

evolution, moving from a qualitative basis for decision making to an increasingly

quantitative basis, and from the use of default assumptions to the application of

mechanistic mathematical models as tools upon which to base decisions. In the

context of determining safe human exposure limits to potentially toxic chemicals,

there are two sub-tasks to be accomplished: estimation of low-dose risk in

animals, and the subsequent conversion of animal risk estimates to human risk

estimates. An authoritative survey of many of the statistical issues and

opportunities is given by Krewski and Franklin (1991).

Extrapolation to low-dose effect, the first sub-task, can be accomplished either

by assuming that biological response varies in a specified mathematical manner

(e.g. probit, logit) with organ host exposure, or by using physiologically-based

pharmacokinetic (PBPK) models to relate organ dose to host exposure; cf.

Krewski and Franklin (1991), chapters 8 and 9; M. Andersen, H. Clewell Jr., and

C. Travis have been prominent in this research area. In the latter approach, multi-

compartment physiological models are formulated using actual tissue volumes

from the experimental and target species and actual perfusion rates to provide

for chemical transport between the compartments. Thus the pharmacokinetics of

high to low-dose extrapolation become amenable to calculation, and external

measures of external dose or exposure can be translated to concentrations in the



target organ (internal dose). Target-organ chemical concentration may be

translated into estimates of risk if a suitable biologically acceptable mathematical

model can be used to relate chemical presence in the organ to harmful outcome.

Such models, called pharmacodynamic, exist for carcinogens, in the form of the

widely-used linearized multistage approximation for cancer dose/response, and

multistage clonal expansion models; cf. Moolgavkar (1988). These models are

based on the general concept that chemical alteration of the cellular genes may

give rise to permanent, heritable changes in the genetic information stored in the

cell nucleus, and lead to phenotypic changes in the altered cells that ultimately

cause the formation of malignant tumors. Simulation is sometimes used to study

stochastic models of carcinogenesis for large numbers of cells; (cf. Bois (1992)).

Unfortunately, analogous dose/response models are not widely available for

toxic responses other than carcinogenesis. The mathematical expression of even

the relatively simple concept of genetic alteration leading to cancer involves

significant simplification of biological reality, and significant mathematical

complexity. This state of affairs is exacerbated when one attempts to describe the

interactions leading to loss of cell function and cell death in tissues of a whole

animal. The multi-layered control and response systems present in an intact

living animal are poorly understood and thus have not yet been adequately

modeled. Nonetheless, these control mechanisms defend against the majority of

toxic effects observed as a result of chemical exposure, and their failure

represents much of what is observed as the expression of toxicity.

This paper describes initial formulations of models for cellular response to

toxic insult. Beginning with a simple Markov model, successive models increase

in biological resolution or refinement as well as mathematical complexity. Our

model formulation takes into account broad aspects of the current state of



knowledge concerning the control and regulation of cellular properties in tissue.

The design of these models is not to provide a detailed description of the

response of specific organs to toxic insult, but rather to begin the process of

mathematically describing recent significant advances in knowledge that have

been made in cell biology, hormonal regulation, and hormetic control mech-

anisms that regulate cell response to toxicants. Some modifications of the model

formulations may be needed to apply them to specific organs; for one thing the

complex geometry of organ architecture is not represented. To have included

complex, three-dimensional relationships between different cell types would

have increased the mathematical complexity considerably. But even in its present

rudimentary state the model is useful for stimulating discussion and suggesting

experimentation, with the goal of furthering the understanding of cellular

response to toxic substances including the effects of tissue-mediated responses

(e.g. mitogenic stimulation). The current formulation of the model, or extensions

thereof, is suitable for experimental evaluation in cell culture if the experimental

conditions are properly chosen and chemical-specific details are added.

We provide the following abbreviated biological background. The tissue

making up organs almost always involves a complex geometrical juxtaposition of

several cell types having specific and often overlapping functions. This tissue

architecture may be maintained by the presence of a nonliving matrix of proteins

collectively known as a basement membrane. Interactions between this membrane

and the cells are known to be critical to its stability as a mature, functioning

entity. The whole of the tissue is permeated by branching blood vessels, each

generation of which is successively smaller; these serve to provide a constant,

stable milieu in which the cells exist. Nutrients, control signals in the form of

specific biomolecules, and xenobiotic chemicals are brought to the immediate



surroundings of the cell by the vasculature in the tissue and cellular metabolic

products; the products of energy metabolism and cellularly derived control

biomolecules are removed from the cellular microenvironment by the same

means.

The state of the cell at any time is a reflection of its age, the summation of the

control chemicals reaching and leaving the cell, the effects of xenobiotic

chemicals present, if any, and the state of the cells surrounding it. Cellular

contact with the surrounding cells and basement membrane act to supply

chemical signals that modulate its activity. A given cell may be (i) nearly

quiescent, (ii) active biochemically, i.e., producing metabolites of absorbed

materials for its own use or for export, (iii) in a state of stress due to shortage or

excess of biochemical molecules, (iv) in a process of programmed cell death

(apoptosis), (v) in the process of dying from chemical insult (necrosis), or (vi)

dividing to form progenitor cells in response to a need to replace cells already

lost; these conditions need not be mutually exclusive at any point in time. Some

specific cells may alter or completely change their observable characteristics in

response to chemical signals. The most well-known of these cells are the

pluripotent stem cells of the hematopoietic system.

The models to be presented here represent some, but by no means all, of the

features mentioned. They provide a basis for proceeding further.

2. Model Structure

In the following sections of this paper we present a sequence of mathematical

models that represent interactions between the cells in an organ's tissue and a

toxic chemical or agent (hereafter called toxin) originating externally and entering

the organ and coming into contact with the cells, possibly in modified form. The

initial models postulate a mature organ with capacity to contain, at most, a fixed



number of cells. Broadly speaking, the organ's cells attempt to remove (e.g.

metabolize or bind) the toxin, but are, to a dose-dependent degree, also affected

by the toxin concentration. We distinguish between cells that are in one of two

stages of the cell cycle: these we call, oversimplifying the true cell cycle,

functional, and dividing (S-phase and mitotic). Functional cells are assumed to be

capable of removing toxin, but are also susceptible to premature death because of

the toxin's action. Dividing cells are in the process of DNA replication and actual

mitosis, here splitting into two daughter cells; while in this stage the cells are

assumed incapable of removing toxin. However, toxin presence is assumed to

affect the cell cycle, e.g. by shortening the functional, and lengthening the

dividing, stages. The model proposed emphasizes inter-cellular signaling: when

a cell dies, i.e. ceases to function, it effectively requests one other functioning cell

to divide to produce its replacement. It is biologically plausible that signaling

occurs only to neighboring cells, but the present model, being without spatial

characteristics, does not literally recognize this restriction. Also, signals are

assumed to be specific: one signal is emitted per cell death, so eventually one

replacement occurs. Alternative formulations are sometimes plausible and are

easily studied.

3. Single-Stage Markov Model

We now present several alternative simple Markov models for cell-toxin

interaction, emphasizing the representation of signaling. Although cells can age

and exist in different stages of functionality we omit an account of this at first,

but return to it later.

Let D(t) represent the number of functional cells in the organ at time t, and

M(0 the number of dividing (mitotic) cells. If a functioning cell that dies

immediately induces another to begin division (instant signaling) then



Co = D(t) + 2M(t) (3.1)

where Co is the maximum organ size, here assumed constant; realistic

elaborations are possible. Note that organ size is, strictly speaking, D(t) + M(f),

which is the number of cells present at time t; Co acknowledges that space for all

cells must leave room for each cell currently in mitosis to eventually become two

differentiated cells. We describe {D(0, M(f)} as a birth and death process in

continuous time, with D(t)e (0, 1, 2, ..., Co). Typically Co is large, i.e. of order

10 10-10 12 for mature humans, and this will be exploited to carry out an

asymptotic analysis.

Let T(0 denote the concentration of toxin in the organ at time t. We represent

{T(0} as a diffusion process whose drift and diffusion coefficients are both

influenced by D(t) so as to represent metabolic or binding action, hence toxin

removal, and by the toxin input to the organ, xtf), as well as the instantaneous

concentration, T(t), itself.

In the following we describe specific models, beginning with the most simple

and (potentially) least realistic, but also the most parsimonious. We explicitly

include the effect of inter-cellular signaling.

3.1 Cellular Signaling

Suppose a cell dies from some cause: apoptosis or necrosis. The effect of its

signaling to other cells for replacement can be captured by postulating that a

ghost (release of growth factor) of the newly-dead cell now exists, the function of

which is to find and interact with a neighboring live cell, inducing that cell to

divide. The ghost then disappears after its purpose is served. One can thus

represent the delay in mitotic response to cell death by adjusting the ghost's

search rate for functional cells.
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The following describes a possible Markov generator that includes the

signaling (ghost) influence. Let G(t) denote the number of signals present in the

organism at time t, and introduce the constraint

Co = D(r) + G(0 + 2M(0. (3.2)

The following then describes the possible transitions allowed to occur in a small

time interval, (t, t + dt).

Signaling Model

(Markov Generator)

t

D(t),G(t),M{t);

IX*)

t + dt Probability

-4 D(t) - 1, Git) + 1M0 X*D(t)dt

T(t) + 8*dt + odW(t)

(cell death, signal creation)

-> D(f) - 1, Git) - 1, Mit) + 1 6 *G(t)(D(t)/C )dt

7X0+ 6*dt + odW(t) (3.3)

(cell signaled to divide, signal

disappears)

-» D(t) + 2, G(0, M(f ) -

1

n*M(t) dt

T(t) + 8*dt + odW(t)

(two newly-divided cells emerge)

All rates of cell transition, namely A*, &\ and (i are presumed to be influenced

by current toxin concentration, 7^0- In turn, the latter is influenced by the

metabolic or binding capability of the cells to remove toxin; the net mean

increase of toxin in the short run is 6*(T(t),D(t),x(t)). Our subsequent analysis

does not, in principle, depend upon specific functional forms for any of the above

parameters; adequate smoothness and differentiability is assumed where

necessary. When specific functions are required we shall use these:



£(T(t)) =x/T{t)
(3.4,a)

n\T(t)) = n e-»
T{i)

(3.4,b)

e*(T(t))=6 e-
e
'
T{t)

; *>V>0. (3.4,c)

Note that it has been assumed that increased toxin level increases cell death rate,

decreases the rate of completing mitosis, and slows the rate at which ambient

signals reach their destinations. The net effect is to reduce the number of

functional cells. All of the above dependencies are hypothetical and illustrative

only. In particular

T(t)(D(t)/C
)8*(T

{tW)At))= *M-v-^{5
no

(3.5)

where in the latter T*(0 represents toxin input rate to the organ, and the

remaining term v (T(f)D(f)/Co)/ 1 + k* T(t)\ represents the toxin concentration

rate-limited (Michaelis-Menton) reduction by functional cells.

It has been observed that the realistic effect of toxin presence on A*, /i*, 0*, etc.

at time t may involve the entire past history of such exposure, e.g.

A (t) = X (T(x),a<x<t); the explicit function may be illustrated by the form

A*(0 = exp j'/(T(x)dx) A further model enhancement would recognize that

toxin presence in the organ may result in cells that complete completing mitosis

giving rise to damaged cells, e.g. possessing DNA adducts. These cells now

become susceptible to repair.

8



3.2 Differential Equations For Deterministic Approximations

Let Co denote the number of spaces/holes that cells may occupy. Then

Co = D(f) + Git) + 2M(t) (3.6)

since the cells in division potentially require two holes. Assume that if Co» 1

then

D(f)/C -» ait), Git)/Co -* yit), IXfl/Co -* Pit) (3.7)

in probability as Co—»°° where the latter functions are O(l). The following

differential equations result from direct manipulation of (3.3):

£21 = -Xa{t )
- 6a(tMO + 2/i(l- a(() - y(())|

;

(3.8)

the last term occurs by virtue of (3.6). Also,

^P = Xa(t)-6a(t)y(t) (3.9)
at

*l = 5 =T-^- (3.10)
dt 1 + Kp

We re-emphasize that all parameters are implicit functions of (current) toxin

level, T{t), and possibly also absolute time, t, which can be viewed as the age of a

mature organ, rather than an individual cell. This latter step is not taken in this

paper.

Note that in (3.8), (3.9), (3.10) the original parameters of (3.3) must be scaled:

KiTit)) is replaced by Xifiit)), e*(7X0) by 0(#O), /i*(T(r)) by nipit)), v\Tit)) by

viPit)), t* by tCo, and k by kCq.

In Section 6 such scaling is exploited more extensively to deduce stochastic

behavior of system state values.



3.3 Solution Without Toxin Input

Suppose no toxin input exists, so T(t) = 0, Vf > 0. Then a steady-state solution

to (3.8) and (3.9) may occur: set derivatives = and solve the resulting equations

to find

y = \, provided 0<-<l (3.11)
6 6

« =4f^}. (3,2)

The latter implies (i) that the larger the signal activity rate, 6, the smaller the

ambient signal population, and the more quickly does signaling induce another

cell to begin division; furthermore (ii) if 8» A, the death rate, signifying highly

efficient signaling, then a —

»

n/(2k + /i), which is equivalent to thinking of cells as

behaving in pairs: once division completes the two daughters effectively compete

to die (rate 2A).

Although the equations (3.8) and (3.9) are non-linear and apparently cannot

be solved explicitly one can obtain an approximate time-dependent solution as

follows:

(a) assume ){t) quickly reaches steady state, so

y(t) = X/e; 0<t (3.13)

This is a standard and useful approximation technique often invoked in

biochemical kinetics problems that is variously abbreviated the quasi-steady-state

assumption (QSSA) or the pseudo-steady-state hypothesis (PSSH); see Segel and

Slemrod (1989) for a careful exposition of its rationale. The QSSA approach gives

rise to the classical Michaelis-Menton used widely in pharmaceutical kinetics and

compartment models; it already appears implicitly in our (3.5) and (3.10).

10



(b) introduce (3.13) into (3.8) to find the approximation a(t )

:

da{t)/dt = -(2A + n)a + n(l - X/6),

the solution of which is

&(t) = a(0)e~
{n+^ + [m(1 " ^)/(2A + /i)](l - e<ZX+^

)

as in (3.12).

(3.14)

(3.15)

3.4 Dose-Response for Small Steady Toxin Exposure

Of interest in risk analysis is the behavior of the dose response curve for small

values of (toxic) dose. We approximate this by finding expressions for

da(r)

dr

dy(r)

t = 0' dr
and-^

t = dr T = 0"

Suppose tit) = t = t ~ 0, a constant, and that exposure has proceeded for some

time so that a steady-state condition has been reached; this is modeled by letting

M0 =M0 =^ = o iR (3g) _ (310) To stud the dose-response for r«0,
dt dt dt

j r

differentiate (3.10) with respect to t using the function S in (3.5) (drop subscript

"o" for convenience)

dvdp ap vda p va dp
|

vccp dp

dpdrl + icp dr 1 + kP 1 + tcp dr (1 + tcp)
2 dr

(3.16)

Since p = for t = 0, equation (3.6) yields for the (scaled) rate of toxin

concentration at low exposure

**
t = va r = v^(i-|)

(3.17)

This shows explicitly how low-dose toxin level in the organ tissue increases as a

function of cell-cycle parameters X and \i, signaling efficiency, 6, and toxin

11



metabolic or binding rate v. All of these parameters are evaluated at very low

(zero) toxin levels.

Next consider steady-state rate of change of scaled functional cell fraction,

da—- = ax = a a • pr ; this is the slope of a dose-(functioning cell count) response
ox H

curve at very low levels of toxin. If (3.12) is differentiated and some

rearrangements made, and if y= XI 6 as in (3.11), then

H =hV(2 + A/M + 2(l-y)) + ^(2A(l-y)) + ^(2A + /z)(/z/g)y]
^ 2

. (3.18)

Since /?T > 0, the sign of Ox is determined by the above linear combination of the

derivatives of the cell cycle and signaling parameters A, fi, and 6 at x, and hence

(3, equal to zero. Note that if the illustrative relations (3.4) are invoked as given,

then ap < 0, hence a? < so a small increase in toxin induces a decline in the

number of functioning cells; this is intuitively acceptable. However, a change in

sign of any of the parameters' derivatives is capable of reversing the sign of the

slope of the dose response curve, thus representing a tendency for hormesis at

low dose.

4. Models with Cell Aging

In this section we generalize the models of the last section to allow cells to

age, and hence exist in possibly different stages of functional effectiveness.

We restrict attention to just two age stages, which we term new (n) and old (o),

distinguishing them by subscript. An arbitrary number of such age states can be

introduced, but at the cost of increasing the number of parameters.

Let Dn (t) (respectively D (f)) represent the number of new (respectively old)

cells at time t. M(t) represents the number of dividing (mitotic) cells at time t and

G(t) the number of ambient signals or ghosts as before. The spatial constraint is

12



Co = Dn(t) + D (t) + Git) + 2M(f).

Here are the transition probabilities assumed:

Signaling Model with Age Dependence

(Markov Generator)

(4.1)

t t + dt

Dn(t),Doit), -> Dn(t)-l,D (t)t G(t) + lM(t)

Git), Mit); Tit) + 8*dt + odWit)

T(t) (new cell death, signal creation)

-> Dnit),D it)-l,Git) + l,Mit)

Tit) + 8*dt + odWit)

(old cell death, signal creation)l

-> Dn it) - 1,DM Git) - l,M«) + 1

Tit) + 8*dt + odWit)

(new cell signaled to divide,

signal disappears)

-> Dn it) f D it) - 1, G(t) - 1, M(0 + 1

Tit) + 8*dt + odWit)

(old cell signaled to divide,

signal disappears)

Dnit) + 2,D it),Git),Mit)-l

Tit) + 8*dt + odWit)

(two newly-divided new cells

emerge)

-> Dnit) -h Doit) + I, Git), Mit)

Tit) + 8*dt + odWit)

(a new cell becomes an old cell)

Probability

£nDn it)dt

X D it)dt

dn Git)iD nit)/C )dt

eo Git)iD it)/Co)dt (4.2)

tfMit) dt

<t>*Dnit)dt

Once again all rates of cell transition, namely aJ,, X , 6n , 6 , /z* are presumed

to be influenced by current toxin concentration. In turn, the latter is influenced by

13



the metabolic capability of the cells to remove toxin, 5*(T(0, Dn (t), D (t), tit)).

When specific functions are required, we shall use for illustration

5-(m(wwo)=Afv;M-v;« (4 .3a)
± + KnT(t) 1 + K l{t)

^(r(0)=Vo
r
e^T®-l +1 >

J
J

p+q = l, p>0

4(r(0)=^,o^'
,T(0

(4.3b)

(4.3c)

(4.3d)

ti*(T{t)) = tioe-^
T^ (4.3e)

The form of (4.3b) permits the adjustment of organ toxin concentration-caused

cell death rate to be flexibly adjusted; if Xn \ < the inner bracket must have its

sign reversed: ( )
+

. As before, the above forms are hypothetical.

4.1 Differential Equations for Deterministic Approximations

Let Co denote the number of spaces /holes that cells may occupy. Then

Co = D n (O + Do(O + G(0 + 2M(0.

Assume that

Co <-0 M) L
(4.4)

in probability as Co —> °°- The following differential equations result from direct

manipulation of (4.2) with scaled rate functions

^^ = -[AB +0]an(O-^a„(Oy(O + 4l-«n(O-ao(O-y(O] (4.5)

fSM = -X a (t) + 0an {t) - eoa (t)y(t) (4.6)
at

14



Ml = -[e„a„(()

+

e a (t)]y(t) +W) + V*„(<) <47>

These equations can be solved numerically, but not in closed parametric form.

4.2 Solution Without Toxin Input

Suppose no toxin input exists so T(t) = 0, t £ 0. Then a steady-state solution to

(4.5) - (4.7) may occur; set derivatives equal to obtaining the following

equations.

= -(A„ + <f>)an - 6nany + /i[l -an -a -y] (4.9)

= -Xoao + <t>an
-6

oaoY (4.10)

= [-Bnan - eoa ]y +^ + X a . (4.11)

Equation (4.10) yields

a„=(l/0)[Ao + oy]ao . (4.12)

Substituting (4.12) into equation (4.11) yields

o = [-dn (y<p)[x + e y] - e
]r
+ {K[{V<t>\K +Ml + A

*)
(413)

after dividing through by ocq.

Rewriting (4.13) we obtain

o

=

(-ene /<i>)Y
2 - y[en (y<t>)x +e -K{Vt%] + [(V#) + i]V (4.14)

Thus y satisfies a quadratic equation. Let y be the positive solution to the

equation. If An(0) = 0, as in (4.3b)

{k^Hk^)
2

+*ki
yo=

_U_* nj ,V w ^ ^ (415)

15



If y < 1, then y= y . If y > 1 then ambient signals and not functional cells

dominate the organ, which in reality would be long defunct even without toxin.

If —r < 1 and

er
. 0. . 0J

(4.16)

then y < 1.

To find olq equation (4.9) is used. Putci = (l/#)Uo + Oofi. Then

/41 ~ To] = {% + 0)q + 0»tt + /4ci + l]}a = {2A + //[q + 1] + 2A„c
1
}or .

Thus,

and

«o = M[l " y ]/{2A + /i[l + q] + 2Vl}

a„=cia .

(4.17)

(4.18)

4.3 Dose-Response For Small Steady Toxin Input

As mentioned earlier, the behavior of an organ-level dose-response curve for

small values of toxic dose is of interest in risk analysis. In this section we indicate

that the derivative of various cellular-level responses with respect to t may be

evaluated at x = 0.

If t = then P = 0. Set the left-hand side of (4.8) equal to zero, then

differentiate the right side with respect to x. After setting p - 0, this yields

= l-[vnan + voao]-£

Thus

dp

dx t = vnan +v a
>0,

(4.19)

(4.20)

as is physically plausible.
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It may be shown by further differentiation that under the specific

parameterization of (3.4), or suitable alternatives, all derivatives of long-run

cellular-level response can be explicitly evaluated at t = 0, as was shown earlier.

The complex details are omitted here.

5. A Model with Cell Aging and Organ Tissue Growth

In this section we generalize the previous model to allow cells to

spontaneously enter mitosis and multiply, thus effectively increasing the organ

size, where the latter is defined as the number of cells in existence, in either state.

In the previous section cell replication only occurred to replace other cells that

previously have died, possibly as a result of toxin action.

Consider the region to be occupied by cells to consist of spaces /holes that

may be filled by cells. Let Co be the maximum number of such holes, in this case

the number in an essentially mature organ. Initially not all such holes are active,

for the organ is immature and hence growing. Hence let C(t) be the number of

active holes at time t , while Co - C(t) are currently quiescent or inactive. Now,

generalizing the previous setup, let the current number of active holes/spaces be

C(t) = D n (t) + D (t) + Git) + 2M(t) (5.1)

and augment the previous model to allow C(t) to gradually grow, although

remaining bounded by Co-

5.1 Organ Growth Stimulated by Signaling

In this model the presence of inactive holes /spaces effectively encourages the

active cells, D n (t) and D (t), to increase the number of signals and hence the

number of active spaces capable of accomodating cells. We are implicitly

modeling the competing effects of positive and negative, or inhibitory, growth

factors.
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The model is specified by the following transitions.

Signaling-Driven Organ Growth

(Markov Generator)

t t+dt

Dn(t\ D (t), -+ Dn it), D it), Git) + 1, Mit), Cit) + 1

Git), Mit), Tit) + Sdt + odWit)

dt) Tit) (a quiescent cell space becomes

active, signal creation)

-» Dn it) - 1, D it), Git) + 1, Mit), Cit)

Tit) + 5dt + odWit)

(new cell death, signal creation)

-> Dnit), D it)
- 1, Git) + 1, M(0, C(0

Tit) + 6dt + odWit)

(old cell death, signal creation)

-> D„(f) + 2, Do(0, G(0 + 1, M(0 - 1, C(0

Tit) + 6dt + odWit)

(two newly-divided cells emerge)

-» D„(f) - 1, Do(0 + 1, G(0, Mit), Cit)

Tit) + 8dt + odWit)

(new cell becomes old)

-> Dn it) - 1, D (f), Gft) - 1, M(0 + 1, Cit)

Tit) + Sdt + odWit)

(new cell signaled to divide,

signal vanishes)

-> Dn it), D it) - 1, Git) - 1,M(0 + 1, C(0

7X0 + Sdt + orfW(0

(old cell signaled to divide,

signal vanishes)

Probability

[&>b(0+£do(0]
i-

c(0
A

^D„(0<if

l D it)dt

H*Mit)dt

<fDn it)dt

nG(t)
C(t)

dt

e G(t)^-dt
K }

C(t)

(5.2)
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Once again, all rates of cell transition, namely, A„, A , €t, 0*, \i, £„, <f; are

presumed to be influenced by current toxin concentration. When specific

functions are required we shall use

&(T(t))=S°M<<im

in addition to those of (4.3 a-e).

(53)

Once again assume that as Co -* <*°

L Lo c

in probability.

m ^-*m^-*m (5.4)

The following differential equations result from direct manipulation of (5.2).

dt
An +0]an(O-^^y(O+^WO-«nW-«oW-yW)

^M=-x a (tye^r(t) + <iKxn (t)

(5.5)

(5.6)

dy(t)
=

dt

enan(t)+e a (t)

m y(0 + Xnan (0 + A a (f ) + [S a (t) + Snan (t)][l - T)(t)] (5.7)

^ = [{„«„(0 + &«oW][l-*)]

#M _
dt

= 5

(5.8)

(5.9)

6. Stochastic Differential Equation Models

The size of the state space makes the time-dependent behavior of the

continuous-time Markov chain models of Sections 3-5 difficult to study. One
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approach to studying the behavior is by Monte Carlo simulation; cf. Bois, et al.

(1992). Another approach, adopted here, is to approximate the continuous-time

Markov chain model by a diffusion process. Note that the continuous-time

Markov chain model has absorbing states; for example, any state with D n (t) +

D (t) = is absorbing. Of course no self-respecting organ would ever start life in

such a state, and a living organ would presumably die from other unmodeled

causes long before such a state is reached, i.e. when Dn (t) + D (t) < D, some lower

limit. Barbour (1976) discusses how long and over what ranges the underlying

continuous-time Markov chain is approximated by a diffusion process of the type

we derive; see also discussion to McNeil and Schach (1973). Stochastic

differential equation models can be written for all the models of Sections 3-5.

We will illustrate our approach by writing down a system of stochastic

differential equations for the multivariate process (Dn (t), D (t), G(t), C(t), T(0) for

Markov generator (5.2). The system of stochastic differential equations is as

follows; as explained subsequently, the dW-terms are normally distributed.

dDn (t) = -4(T(t))Dn (l)d(-e;(r(())G(()(D„(()/C(0>it

-i(T(t))Dn (t)dt + M*(T(0)(C(0 - D„(() -D (() - G(())d(.

drift = conditional
expected change
m(t,t+dt)

-JeQT^DMdW^ (t) - ^(T(t))Dn (t)dW^(t)

-^ee:(T(t))G(t)(Dn (t)/C(t))dWen (t)

+^ (T(t))(C(t) - DH [t) - D (t) - G(f))i dW^t)

fdiffusion=randomA

change in (t,t + dt)
)

(6.1)
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(drift)

dD (t) = -£(T(t))D (t)dt - 6'
(T(t))G(t)(D (t)/C(t))dt

+i(T(t))Dn (t)dt

-JeX* {T(t))D (t)dW
Xo

(t) + ^(T(t))Dn (t)dW^(t)

-pl{T(t))G(t){D (t)/C(t))dW
6o

(t)

(diffusion)

(6.2)

dG(t) = -e*n (T(t))G(t)(Dn (t)/C(t))dt - el(T(t))G(t)(D (t)/C(t))dt

+%(T(t))D (t)dt+£
tt
(T(t))Dn(t)dt

H*n(T{t))Dn (t) 1-
C(t)

c,o

.

+Simp,® i-
Co.

(drift)

-^ee'n {T(t))G(t)(Dn (t)/C(t))dWen (()

-p' (T(t))G(t)(D (t)/C(t))dW
ec (<)

+^K(T ('))Do(<)^ (') +^(TOPnWW^ (()

+ ^(r(())D„(() 1-
coJ

dw
|n

(()

+,K(T(0)Do(0
C(()

-0 J

dw
|o

(f)

(diffusion)

(6.3)
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mm&fm^-^
s

+&{T(t))Dn (t)

C0J
(drift)

+ e£(T(t)pB(t) 1-
co J

dW^t)

+ e£(T(t)pn (t) r_£W «W£,(0

(diffusion)

(6.4)

^ = ^(T(0,Dn (0,Do (0,T*(0^}(drift)

+aT {T(t) >Dn (t) /D (t)f r(t))dWaT (t)

+y[C^ardWT (t)

(6.5)

(diffusion)

where {w^^W},^
and (w^f)} are independent standard Brownian motions; each dW(0-term is

thus Gaussian with mean zero and variance dt.

Setting the constant e = 1 lets the variances of the change in the number of

active cells, ghosts in identified states, and active spaces be equal to the mean

respective changes; this represents Poisson variability. Setting the constant £ > 1

implies that the variability is larger than Poisson variability. This additional

variability may be the result of inhomogeneities in the organ that are not

explicitly modeled; cf. Bass, Robinson and Bracken (1978) for discussion of a

distributed liver model with random inhomogeneities. Such overdispersion is

frequently encountered in practice, and may be accounted for parsimoniously as

we do; see McCullagh and Nelder (1983).

We assume that as Co —> °°

c Co Co
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in probability and rewrite Dn (t), D (t), G(t), C(t), and 7X0 as follows.

Dn (t) = C an (t) + Jq;xn (t) (6.7a)

D (t) = Coa (t) +^X (t) (6.7b)

' G(0 = 0)7(0 + VQ)xg(0 <6 -7c>

C^^Co^ +^X^t) (6.7d)

T(f) = Coi3(0 +^OyW (67e)

<***(*) = Cqt(0 +^ardWT (t) (67f)

The transition rates will be scaled and expanded as follows:

4(r(0)= A„(r(f)/c )= a,0W))+KiPCW')/^ +0(1) (6.8a)

A;(T(()) = ^(T(0/Q,) = A (/5(<)) + Ji(«0)*(0A/5> + 0(1) (6.8b)

/i*(r(t))

=

m(t(0/co )
= mWO) +nW))n)l-fo + o(i) (6.8c)

<£(T(0) = e„(T(t)/c ) = e„(^(<))+ ^(^(())v(()/VQ + o(i) (6.8d)

0'o{T(>)) = *„C(0/C6) = *<,(/5(0) +%(m)n')/^ + O(l) (6.8e)

«;(T(0) = ^(T(0/C )
= fe,(«0)+«;(/((0)V(0/>/Q+O(l) (6.80

&*(r(0) = lo(r(()/c ) = S,WO) +£(/»(0)*(0A/Q + o(i) (6.8g)
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$*(D„(t),Do(f),T(0, % (*)) = c 5(dm(0/c ,do(0/q, ,t(0/c , t (O/Co)

= Cb5(aB (f),ao(0,/5(*M0) (6.8h)

+Co5i Siffi + Cb^i^ +0^^ + 0(1)

ar(DB(0,Do(0,r(0,T*(0) = VCo^r(D„W/C ,D (f)/Q> ,T(0/Q>
,
t (0/q,)

(6.8i)

= VQar (an (0,ao(0^(0^W) + 0(1)

Dividing equations (6.1) - (6.5) by Co, scaling and substituting (6.7a) - (6.7 f)

results in a system of equations involving the deterministic components an (t),

«o(0, )0), 77(0, and p(t) and the corresponding stochastic components Xn (t), X (t),

Xg(t), Xc(0, and Y(t). See Appendix 1 for details.

6.1 Second Moments

The stochastic differential equations (A.l) - (A.10) of Appendix 1, derived for

the stochastic disturbances, can be written in matrix-vector form as

dZ(t) = Aft)Z(f) + B(0 dmt) (6.9)

where in the present example Z is a 5x1 column vector, A is a 5x5 matrix, dW(t) is

10x1 column of independent Gaussian noise terms and B(0 is a 5x10 matrix.

It follows from theorem (8.5.5) of Arnold (1974) that

d
|-E[z?(0] = 2XA i;

(0E[z
i
(0Z

; (0]
+ l(B

(/
W) (6.10)

dt

and
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^E[z,( ()z,(0]=lAft
(f)4zt(0z,W]

k

+SA/Jt (OE[Z*(OZ,.(0] (6.11)

k

k

Thus,the approximate distribution ofDn(t), (respectively D (t), G(t), C(t),T(t)) is

normal with mean Coan (t), (respectively Coctoit), Coy(t) CnrKO, Cop(t)) and variance

C e[x2
(0], (respectively C E[xo

2
(0],C E[4(f)],CoE[xc

2
(0],CoE[v

2
(0])- The

approximate covariance of Dn (t) and D (t) is CoE[Xn (t)X (t)], etc.

We point out that exactly equivalent results can be obtained by introducing

transforms for the state variables, computed by taking conditional mathematical

expectations of exponential functions of the Markov generators. This is the route

followed by McNeil and Schach (1973); see also Carpenter, Gaver, and Jacobs

(1993). The transform approach provides a verification that the asymptotics

described here actually lead to limiting Gaussian distributions and to Ornstein-

Uhlenbeck processes. See Ethier and Kurtz (1986) for a more rigorous discussion.

The approach taken here, while heuristic, is intuitively appealing and reaches the

same ultimate conclusion.

6.2 Numerical Examples

In this section we present three numerical examples.

a. Constant Rate of Input of Toxin

We assume chronic dosage of the organ by toxin that is delivered there at

constant mean rate but with substantial randomness around that mean.

Figures 1-5 depict the time variation of the expected numbers of new cells,

of old cells, of total number of active (new plus old) cells, number of signals
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(ghosts), and amount of toxin plus/minus two population standard deviations.

There is no organ growth. The initial conditions are the limiting moments with

no toxin input. The toxin input rate 0.2 units/cell for all time. The new cells

without toxin have mean time 100 before transitioning to old. The old cells have

mean lifetime of 100 without toxin. The number of cells in the organ is 1.5x10s .

The organ size is about that of a mouse liver. Since the cells in a mouse liver have

a mean lifetime of about 200 days; cf. Bois, et al. (1992), the above is consistent

with mouse liver behavior. The MATLAB 4th and 5th order Runge-Kutta-

Fehlberg numerical integration method was used to obtain the solutions. The

MATLAB plotting algorithms were used to produce the figures.

There is extra Poisson variability: £ = 104 .

Note that the total mean number of active (new and old) cells decreases as the

result of toxin input, as seems intuitively reasonable. The mean number of new

cells initially decreases, but eventually increases to a new steady-state value

which is larger than the value with no toxin. The mean number of old cells

initially increases briefly, but then decreases to a new steady-state value below

the value for no toxin. The mean amount of toxin and the mean number of

signals (ghosts) both increase to new steady-state values.

The above hypothetical example illustrates how model parametric inputs

translate into an account of the dynamics of subpopulations of cells. The details

of the transition from one steady-state situation to another are of possible interest

in that the organ may be in jeopardy during that transitional period because of,

for example, new cell initial downward fluctuation. The effect on organ mortality

is, however, not explicitly modeled.
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b. A Toxin Pulse or Bolus Dose

Figures 6-10 display the mean number of new cells, old cells, active cells

(new and old), signals (ghosts) and amount of toxin plus and minus 2 standard

deviations for the case in which the rate of toxin input is 0.2 per cell for the first

50 time units and thereafter. Once again there is no organ growth. The initial

conditions are steady-state values when there is no toxin input. Note that the

number of active cells decreases during toxin input, then increases and slightly

overshoots the steady-state value with no toxin before returning to its steady-

state value with no toxin.

c. Organ Growth

The model of Section 5.1 and (6.1) - (6.5) is initialized with the steady-state

values for the second moments with no input of toxin. However, only 1/2 of the

available spaces are active (may contain cells); the steady-state mean of new and

old cells and ghosts for no toxin input are multiplied by 1/2 and used as initial

values. Figures 11-15 display the mean numbers of new, old, and active cells,

ghosts, and active spaces pius/minus two standard deviations for the case of no

toxin input and parameters £n/o = 0.5, £n/ i = 0.5, <f^o = 1/ <5o,l = 0.5. The mean

number of active spaces is the maximum number by time 20. However, the mean

number of old and new cells is still adjusting by time 100. The mean number of

old cells initially decreases before increasing. The mean number of new cells

initially increases before decreasing.

The present model might be useful for describing the aftermath of a partial

hepatechtomy: about one-half of a mature liver remains, and grows back with

subpopulations of cells responding as shown. Note that, according to the present

model in Figure 12, the organ must withstand an early signal to old cells to

undergo substantial depletion to enter mitosis and bring forth replacements; the
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latter are the new cells depicted in Figure 11. It may be that the sudden depletion

of old cells to their low point at about t - 6 (Figure 12) actually puts the organ in

jeopardy.

Figures 16 - 21 display the mean number of new, old, and active cells, ghosts

and active spaces plus/minus two standard deviations for the same parameters

as used in Figures 11-15 but with two levels of toxin input. The dashed lines

correspond to no toxin input. The solid lines correspond to a constant toxin input

of 0.2 per cell per unit time. The graphs with positive toxin input have the same

general shape as those with no toxin input. The mean number of new cells is

initially less for a positive toxin input than for no toxin input. However, by time

100 the mean number of new cells with positive toxin input is becoming larger

than that for no toxin input.

The effect of positive toxin input on the mean number of old cells is that it is

initially larger than that for no toxin but by time 100 the mean number of old

cells with positive toxin is less than that for no toxin. The effect of positive toxin

input on the mean number of active (old and new) cells is to decrease it and

delay its approach to a steady state value. The mean number of ghosts is larger

with positive toxin input. Positive toxin input delays the overall growth in the

number of active spaces.
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Appendix 1

This appendix provides the detailed asymptotic development of both the

deterministic approximation (5.5) - (5.9) but also for the stochastic components

introduced in (6.7). Start by introducing the normalization (6.7) into (6.1) - (6.5)

and divide by Co- The following results are obtained:

tan (t) + -jL-dxn (t) = - um)+Km)^ i
a»W+-p-xn (0 dt

*„(«o)+*;(«o)^
\(,t)+-i-xn (t)

rW+^x,(o]
iK*)+nirxc (*)

df

+

4«0)+*'(«0)^
vLo_

n(«0)+^'(«0)^
Vco.

a„(0 + -ii-Xn (0 A

![u(0-«n(0-ao(0-y(0]

Vq
Xc(f)-Xn(r)-Xo(0-Xg(t)]U

+4-Je4/i(«f)X»K») - «„(') - «<,(')- r(0)|«W0 +

o

i_

Vc0,/
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da (t) + -jLdX (t) = - *•(«*)) +«w*))^Kw +
t^

x°m dt

Y( t\J i fao(0 + -/^xo

rf(

0(0) + W))^T«.M

+

-^x» (') dt
(A.2)
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dy(t) + 1L-dXg (t) =

+

en (/?(0) + eA(/3(())^
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+-4-crtdWT(0+o

The terms of order 1 in (A.l) - (A.5) yield the deterministic equations (5.5)

(5.9).
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The terms of order 1/VCo in (A.l) - (A.5) give the following stochastic

differential equations for the noise terms.

-e„(«0)x,(()^-^(«/))rW^v(( )

-»»(W)M0 X„(()-^Xc (f)m w
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g
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+M'(/3(0)[*)-«n (')-«o(0-r(0M<)

-^„(« t))r(0^dw,
n (

(
)

+^{P(t)){v(t)-an (t)-a (t)- r(()) dW„ (()

(A.6)
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